
Dissecting the impact of the wireless channel on radio
fingerprinting,” in INFOCOM, 2020, pp. 646–655.
[20] F. Alaca and P. C. van Oorschot, “Device fingerprinting
for augmenting web authentication: classification and
analysis of methods,” in ACSAC, 2016, pp. 289–301.
[21] N. A. Anagnostopoulos, T. Arul, Y. Fan, C. Hatzfeld,
A. Schaller, W. Xiong, M. Jain, M. U. Saleem,
J. Lotichius, S. Gabmeyer, J. Szefer, and S. Katzen-
beisser, “Intrinsic run-time row hammer PUFs: Leverag-
ing the row hammer effect for run-time cryptography and
improved security,” Cryptography, vol. 2, no. 3, p. 13,
2018.
[22] Z. Ba, S. Piao, X. Fu, D. Koutsonikolas, A. Mohaisen,
and K. Ren, “ABC: enabling smartphone authentication
with built-in camera,” in NDSS, 2018.
[23] G. Baldini and I. Amerini, “Smartphones identification
through the built-in microphones with convolutional neu-
ral network,” IEEE Access, vol. 7, pp. 158 685–158 696,
2019.
[24] K. Boda, ´
A. M. F¨
oldes, G. G. Guly´
as, and S. Imre, “User
tracking on the web via cross-browser fingerprinting,” in
NordSec, 2011, pp. 31–46.
[25] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh,
“Mobile device identification via sensor fingerprinting,”
CoRR, vol. abs/1408.1416, 2014. [Online]. Available:
http://arxiv.org/abs/1408.1416
[26] L. Breiman, “Random forests,” Mach. Learn., vol. 45,
no. 1, pp. 5–32, 2001.
[27] E. Bursztein, A. Malyshev, T. Pietraszek, and K. Thomas,
“Picasso: Lightweight device class fingerprinting for web
clients,” in SPSM@CCS, 2016, pp. 93–102. [Online].
Available: http://dl.acm.org/citation.cfm?id=2994467
[28] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser finger-
printing via OS and hardware level features,” in NDSS,
2017.
[29] A. Christensen, “Reduce resolution of performance.now,”
https://developer.mozilla.org/en-US/docs/Web/API/
Performance/now, 2015.
[30] W. B. Clarkson, “Breaking assumptions: Distinguishing.
between seemingly identical items using cheap sensors,”
Ph.D. dissertation, Princeton, 2012.
[31] E. Commission, “General Data Protection Regula-
tion (GDPR),” https://ec.europa.eu/info/law/law-topic/
data-protection/eu-data-protection-rules en.
[32] D. Cozzolino and L. Verdoliva, “Noiseprint: A CNN-
based camera model fingerprint,” IEEE TIFS, vol. 15,
pp. 144–159, 2020.
[33] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The web’s
sixth sense: A study of scripts accessing smartphone
sensors,” in CCS, 2018, pp. 1515–1532.
[34] A. Das and N. Borisov, “Poster: Fingerprinting smart-
phones through speaker,” in Poster at the IEEE Security
and Privacy Symposium, 2014.
[35] A. Das, N. Borisov, and M. Caesar, “Do you hear what
I hear?: Fingerprinting smart devices through embedded
acoustic components,” in CCS, 2014, pp. 441–452.
[36] A. Das, N. Borisov, and E. Chou, “Every move you make:
Exploring practical issues in smartphone motion sensor
fingerprinting and countermeasures,” PoPETs, vol. 2018,
no. 1, pp. 88–108, 2018.
[37] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelaku-
diti, “Accelprint: Imperfections of accelerometers make
smartphones trackable,” in NDSS, 2014.
[38] A. Durey, P. Laperdrix, W. Rudametkin, and R. Rouvoy,
“FP-Redemption: Studying browser fingerprinting adop-
tion for the sake of web security,” in DIMVA, 2021, pp.
237–257.
[39] P. Eckersley, “How unique is your web browser?” in
PETS, 2010, pp. 1–18.
[40] S. Englehardt and A. Narayanan, “Online tracking: A 1-
million-site measurement and analysis,” in CCS, 2016,
pp. 1388–1401.
[41] I. Fouad, N. Bielova, A. Legout, and N. Sarafijanovic-
Djukic, “Missed by filter lists: Detecting unknown third-
party trackers with invisible pixels,” PoPETs, vol. 2020,
no. 2, pp. 499–518, 2020.
[42] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand
pwning unit: Accelerating microarchitectural attacks with
the GPU,” in IEEE SP, 2018, pp. 195–210.
[43] A. G ´
omez-Boix, P. Laperdrix, and B. Baudry, “Hiding
in the crowd: an analysis of the effectiveness of browser
fingerprinting at large scale,” in WWW, 2018, pp. 309–
318.
[44] C. Herder, M. M. Yu, F. Koushanfar, and S. Devadas,
“Physical unclonable functions and applications: A tuto-
rial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–
1141, 2014.
[45] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial
SRAM state as a fingerprint and source of true random
numbers for RFID tags,” in Proceedings of the Confer-
ence on RFID Security, vol. 7, no. 2, 2007, p. 01.
[46] ——, “Power-up SRAM state as an identifying finger-
print and source of true random numbers,” IEEE Trans.
Computers, vol. 58, no. 9, pp. 1198–1210, 2009.
[47] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the
fingerprinters: Learning to detect browser fingerprinting
behaviors,” in IEEE SP, 2021, pp. 283–301.
[48] H. Jonker, B. Krumnow, and G. Vlot, “Fingerprint
surface-based detection of web bot detectors,” in ES-
ORICS, 2019, pp. 586–605.
[49] G. Kenneth Russell, personal communication.
[50] D. Kristol and L. Montulli, “HTTP state management
mechanism,” Internet Requests for Comments, RFC Ed-
itor, RFC 2109, Feb. 1997.
[51] P. Laperdrix, G. Avoine, B. Baudry, and N. Nikiforakis,
“Morellian analysis for browsers: Making web authen-
tication stronger with canvas fingerprinting,” in DIMVA,
2019, pp. 43–66.
[52] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty
and the beast: Diverting modern web browsers to build
unique browser fingerprints,” in IEEE SP, 2016, pp. 878–
894.
[53] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. V. Dijk,
and S. Devadas, “A technique to build a secret key in
integrated circuits with identification and authentication
applications,” in In Proceedings of the IEEE VLSI Cir-
cuits Symposium, 2004, pp. 176–179.
[54] A. Liaw and M. Wiener, “Classification and regression by
randomForest,” R news, vol. 2, no. 3, pp. 18–22, 2002.
[55] M. Moenig, “Issue 820891: Webgl2:
EXT disjoint timer query webgl2 failing in beta
of 65,” https://bugs.chromium.org/p/chromium/issues/
detail?id=820891, 2018.
15