
On Reliability of JA3 Hashes for Fingerprinting Mobile Applications 21
3. Anderson, B., McGrew, D.: TLS Beyond the browser: combining end host and
network data to understand application behavior. In: Proceedings of the Internet
Measurement Conference, pp. 379–392 (2019)
4. Anderson, B., Paul, S., McGrew, D.: Deciphering malware’s use of TLS (without
decryption). J. Comput. Virol. Hacking Tech. (2018)
5. Benjamin, D.: Applying Generate Random Extensions And Sustain Extensibility
(GREASE) to TLS Extensibility. IETF RFC 8701, January 2020
6. B¨ottinger, K., Schuster, D., Eckert, C.: Detecting fingerprinted data in TLS traffic.
In: Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, pp. 633–638. ASIA CCS 2015. Association for Computing
Machinery, New York (2015)
7. Castelluccia, C., Kaafar, M.A., Tran, M.D.: Betrayed by your ads!. In: Fischer-
H¨ubner, S., Wright, M. (eds.) Privacy Enhancing Technologies, pp. 1–17. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7 1
8. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Can’t you hear me knocking:
identification of user actions on android apps via traffic analysis. In: Proceed-
ings of the 5th ACM Conference on Data and Application Security and Privacy,
CODASPY 2015, pp. 297–304. New York, NY, USA (2015)
9. Danezis, G.: Traffic Analysis of the HTTP Protocol over TLS (2009). https://pdfs.
semanticscholar.org/9d75/9184cdc524624fe551b9fc15de9a4cd199fa.pdf
10. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
IETF RFC 5246, August 2008
11. Eckersley, P.: How unique is your web browser? In: Proceedings of the 10th Inter-
national Conference on Privacy Enhancing Technologies, PETS 2010, pp. 1–18.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14527-8 1
12. van Ede, T., et al.: FlowPrint: semi-supervised mobile-app fingerprinting on
encrypted network traffic. In: NDSS (2020)
13. Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N.: An
analysis of pre-installed android software. In: 41st IEEE Symposium on Security
and Privacy. IEEE (2020)
14. Govindaraj, J., Verma, R., Gupta, G.: Analyzing mobile device ads to identify
users. DigitalForensics 2016. IAICT, vol. 484, pp. 107–126. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319- 46279-0 6
15. Hoffman, P., McManus, P.: DNS Queries over HTTPS. RFC 8484, October 2018
16. Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., Hoffman, P.: Specification
for DNS over Transport Layer Security (TLS). IETF RFC 7858, May 2016
17. Hupperich, T., Maiorca, D., K¨uhrer, M., Holz, T., Giacinto, G.: On the robust-
ness of mobile device fingerprinting: can mobile users escape modern web-tracking
mechanisms? In: Proceedings of the 31st ACSAC, pp. 191–200. New York, USA
(2015)
18. Hus´ak, M., ˇ
Cerm´ak, M., Jirs´ık, T., ˇ
Celeda, P.: Https traffic analysis and client
identification using passive SSL/TLS fingerprinting. EURASIP J. Inf. Secur. (2016)
19. Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N.,
Caballero, J.: Coming of age: a longitudinal study of TLS deployment. In: Pro-
ceedings of the Internet Measurement Conference 2018, pp. 415–428 (2018)
20. Kurtz, A., Gascon, H., Becker, T., Rieck, K., Freiling, F.: Fingerprinting mobile
devices using personalized configurations. Proc. Privacy Enhancing Technol. 1,
4–19 (2016)
21. Kwakyi, G.: How Do Mobile Advertising Auction Dynamics Work? Incipia
Blog (2018). https://incipia.co/post/app-marketing/how-do-mobile-advertising-
auction-dynamics-work/