
Web Runner 2049: Evaluating Third-Party Anti-bot Services 157
13. Acar, G., et al.: FPDetective: dusting the web for fingerprinters. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
CCS 2013, pp. 1129–1140. ACM, New York (2013)
14. Bursztein, E., Malyshev, A., Pietraszek, T., Thomas, K.: Picasso: lightweight
device class fingerprinting for web clients. In: Proceedings of the 6th Workshop
on Security and Privacy in Smartphones and Mobile Devices (2016)
15. Canali, D., Balzarotti, D.: Behind the scenes of online attacks: an analysis of
exploitation behaviors on the web. In: 20th Annual Network & Distributed Sys-
tem Security Symposium (NDSS 2013) (2013). https://hal.archives-ouvertes.fr/
hal-00799082
16. Cao, Y., Li, S., Wijmans, E.: (Cross-)browser fingerprinting via OS and hardware
level features. In: 24nd Annual Network and Distributed System Security Sympo-
sium, NDSS (2017)
17. Cloudflare: The web performance & security company. https://www.cloudflare.
com
18. Das, A., Acar, G., Borisov, N., Pradeep, A.: The web’s sixth sense: a study of scripts
accessing smartphone sensors. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1515–1532. ACM (2018)
19. DistilNetworks: Bad Bot Report (2018). https://resources.distilnetworks.com/
travel/2018-bad-bot- report
20. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527- 8 1
21. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 1388–1401. ACM, New York (2016)
22. Fifield, D., Egelman, S.: Fingerprinting web users through font metrics. In: Pro-
ceedings of the 19th International Conference on Financial Cryptography and Data
Security (2015)
23. G´omez-Boix, A., Laperdrix, P., Baudry, B.: Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale. In: WWW 2018: The 2018
Web Conference, April 2018
24. Jacob, G., Kirda, E., Kruegel, C., Vigna, G.: PUBCRAWL: protecting users and
businesses from crawlers. In: USENIX Security Symposium, pp. 507–522 (2012)
25. Jueckstock, J., Kapravelos, A.: Visible V8: in-browser monitoring of JavaScript in
the wild. In: Proceedings of the ACM SIGCOMM Internet Measurement Confer-
ence, IMC, pp. 393–405 (2019)
26. Kelley, P.G., et al.: Guess again (and again and again): measuring password
strength by simulating password-cracking algorithms. In: Proceedings - IEEE Sym-
posium on Security and Privacy (2012)
27. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: 37th IEEE Symposium
on Security and Privacy (S&P 2016) (2016)
28. Lerner, A., Simpson, A.K., Kohno, T., Roesner, F.: Internet jones and the raiders
of the lost trackers: an archaeological study of web tracking from 1996 to 2016. In:
USENIX Security 2016 (2016)
29. Louren¸co, A.G., Belo, O.O.: Catching web crawlers in the act. In: Proceedings of
the 6th International Conference on Web Engineering, pp. 265–272. ACM (2006)
30. Lu, B., Zhang, X., Ling, Z., Zhang, Y., Lin, Z.: A measurement study of authen-
tication rate-limiting mechanisms of modern websites. In: Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018 (2018)