
Leveraging Frequency Analysis for Deep Fake Image Recognition
Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L.
Novel dataset for fine-grained image categorization. In
First Workshop on Fine-Grained Visual Categorization,
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2011.
Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.
Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh,
W. Z., Sotelo, J., de Br
´
ebisson, A., Bengio, Y., and
Courville, A. C. Melgan: Generative adversarial net-
works for conditional waveform synthesis. In Advances
in Neural Information Processing Systems (NeurIPS),
2019.
Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In IEEE International Conference
on Computer Vision (ICCV), December 2015.
Luk
´
a
ˇ
s, J., Fridrich, J., and Goljan, M. Digital camera identi-
fication from sensor pattern noise. IEEE Transactions on
Information Forensics and Security, 2006.
Lyu, S. Natural image statistics in digital image forensics.
In Digital Image Forensics, pp. 239–256. Springer, 2013.
Marra, F., Gragnaniello, D., Cozzolino, D., and Verdoliva, L.
Detection of gan-generated fake images over social net-
works. In IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR), 2018.
Marra, F., Gragnaniello, D., Verdoliva, L., and Poggi, G.
Do gans leave artificial fingerprints? In IEEE Confer-
ence on Multimedia Information Processing and Retrieval
(MIPR), 2019.
McCloskey, S. and Albright, M. Detecting gan-
generated imagery using color cues. arXiv preprint
arXiv:1812.08247, 2018.
Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.
Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks.
International Conference on Learning Representations
(ICLR), 2018.
Mo, H., Chen, B., and Luo, W. Fake faces identification
via convolutional neural network. In ACM Workshop on
Information Hiding and Multimedia Security, 2018.
Nataraj, L., Mohammed, T. M., Manjunath, B., Chan-
drasekaran, S., Flenner, A., Bappy, J. H., and Roy-
Chowdhury, A. K. Detecting gan generated fake images
using co-occurrence matrices. Electronic Imaging, 2019.
Odena, A., Dumoulin, V., and Olah, C. Deconvolution and
checkerboard artifacts. Distill, 2016.
Petzka, H., Fischer, A., and Lukovnicov, D. On the regular-
ization of wasserstein gans. In International Conference
on Learning Representations (ICLR), 2018.
Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In International Conference on
Learning Representations (ICLR), 2016.
Razavi, A., van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. In Advances
in Neural Information Processing Systems (NeurIPS),
2019.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. Improved techniques for training
gans. In Advances in Neural Information Processing
Systems (NeurIPS), 2016.
Simonite, T. Artificial intelligence is coming for our faces.
Wired, 2019.
Sirovich, L. and Kirby, M. Low-dimensional procedure
for the characterization of human faces. Journal of the
Optical Society of America. A, Optics and image science,
1987.
Song, L., Wu, W., Qian, C., He, R., and Loy, C. C. Every-
body’s talkin’: Let me talk as you want. arXiv preprint
arXiv:2001.05201, 2020.
Tariq, S., Lee, S., Kim, H., Shin, Y., and Woo, S. S. Gan
is a friend or foe? a framework to detect various fake
face images. In ACM/SIGAPP Symposium on Applied
Computing, 2019.
Thompson, N. and Lapowsky, I. How russian trolls used
meme warfare to divide america. Wired, 2017.
Tolhurst, D., Tadmor, Y., and Chao, T. Amplitude spectra
of natural images. Ophthalmic and Physiological Optics,
1992.
Torralba, A. and Oliva, A. Statistics of natural image cate-
gories. Network: computation in neural systems, 2003.
Valle, R., Cai, W., and Doshi, A. Tequilagan: How to easily
identify gan samples. arXiv preprint arXiv:1807.04919,
2018.
van den Oord, A., Vinyals, O., et al. Neural discrete repre-
sentation learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.