
Combining behavioral biometrics andsession context analytics toenhance risk-based static…
1 3
4. Kaspersky: Zeus malware. Online (2019). https://usa.kaspersky.
com/resource-center/threats/zeus-virus. Accessed 12 Sept 2019
5. Alaca, F., VanOorschot, P.C.: Device fingerprinting for augment-
ing web authentication: classification and analysis of methods. In:
Proceedings of the 32nd Annual Conference on Computer Secu-
rity Applications, pp. 289–301. ACM (2016)
6. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack
detection research. In: Stolfo, S.J., Bellovin, S.M., Keromytis,
A.D., Hershkop, S., Smith, S.W., Sinclair, S. (eds.) Insider Attack
and Cyber Security, pp. 69–90. Springer, Boston (2008)
7. Yampolskiy, R.V., Govindaraju, V.: Behavioural biometrics: a
survey and classification. Int. J. Biom. 1(1), 81–113 (2008)
8. Zheng, N., Paloski, A., Wang, H.: An efficient user verification
system via mouse movements. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security, pp.
139–150. ACM (2011)
9. Mondal, S., Bours, P.: Combining keystroke and mouse dynam-
ics for continuous user authentication and identification. In: 2016
IEEE International Conference on Identity, Security and Behavior
Analysis (ISBA), pp. 1–8. IEEE (2016)
10. Shen, C., Cai, Z., Guan, X., Wang, J.: On the effectiveness and
applicability of mouse dynamics biometric for static authentica-
tion: a benchmark study. In: 2012 5th IAPR International Confer-
ence on Biometrics (ICB) (2012)
11. Solano, J., Camacho, L., Correa, A., Deiro, C., Vargas, J., Ochoa,
M.: Risk-based static authentication in web applications with
behavioral biometrics and session context analytics. In: Zhou, J.,
Deng, R., Li, Z., Majumdar, S., Meng, W., Wang, L., Zhang, K.
(eds.) Applied Cryptography and Network Security Workshops,
pp. 3–23. Springer, Berlin (2019)
12. Harilal, A., Toffalini, F., Homoliak, I., Castellanos, J., Guarnizo,
J., Mondal, S., Ochoa, M.: The wolf of SUTD (twos): a dataset of
malicious insider threat behavior based on a gamified competition.
J. Wirel. Mob. Netw. (2018). https://doi.org/10.22667/JOWUA
.2018.03.31.054
13. Traore, I., Woungang, I., Obaidat, M.S., Nakkabi, Y., Lai, I.: Com-
bining mouse and keystroke dynamics biometrics for risk-based
authentication in web environments. In: 2012 Fourth International
Conference on Digital Home (2012)
14. Swati Gurav, R.G., Mhangore, S.: Combining keystroke and
mouse dynamics for user authentication. Int. J. Emerg. Trends
Technol. Comput. Sci. (IJETTCS) 6, 055–058 (2017)
15. Cao, Y., Li, S., Wijmans, E.: (Cross-)browser fingerprinting via
OS and hardware level features. In: NDSS (2017). https://doi.
org/10.14722/ndss.2017.23152
16. Nakibly, G., Shelef, G., Yudilevich, S.: Hardware fingerprinting
using HTML5 (2015). arXiv:1503.01408v3
17. Sanchez-Rola, I., Santos, I., Balzarotti, D.: Clock around the
clock: time-based device fingerprinting. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1502–1514 (2018)
18. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device
fingerprinting. IEEE Trans. Dependable Secure Comput. 2(2),
93–108 (2005)
19. Bailey, K.O., Okolica, J.S., Peterson, G.L.: User identification and
authentication using multi-modal behavioral biometrics. Comput.
Secur. 43, 77–89 (2014)
20. Misbahuddin, M., Bindhumadhava, B.S., Dheeptha, B.: Design
of a risk based authentication system using machine learning
techniques. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence
Computing, Advanced Trusted Computed, Scalable Computing
Communications, Cloud Big Data Computing, Internet of People
and Smart City Innovation, pp. 1–6 (2017)
21. Solano, J., Tengana, L., Castelblanco, A., Rivera, E., Lopez, C.,
Ochoa, M.: A few-shot practical behavioral biometrics model for
login authentication in web applications. In: NDSS Workshop on
Measurements, Attacks, and Defenses for the Web (MADWeb’20)
(2020)
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.