
[4] Y. Gorodnichenko, T. Pham, O. Talavera, Social media, sentiment and
public opinions: Evidence from #Brexit and #USElection, Working Paper
24631, National Bureau of Economic Research (2018).
[5] Y. Xie, S.-Z. Yu, A large-scale hidden semi-markov model for anomaly
detection on user browsing behaviors, IEEE/ACM Trans. Netw. 17 (2009)
54–65.
[6] E. Bursztein, M. Martin, J. Mitchell, Text-based CAPTCHA strengths and
weaknesses, in: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS 11, Association for Computing Machinery,
New York, NY, USA, 2011, pp. 125–138.
[7] K. Bock, D. Patel, G. Hughey, D. Levin, unCaptcha: A low-resource defeat
of reCaptcha’s audio challenge, in: 11th USENIX Workshop on Offensive
Technologies (WOOT 17), USENIX Association, Vancouver, BC, 2017.
[8] A. K. Jain, K. Nandakumar, A. Ross, 50 years of biometric research: Ac-
complishments, challenges, and opportunities, Pattern Recognition Letters
79 (2016) 80–105.
[9] J. Fierrez, A. Pozo, M. Martinez-Diaz, J. Galbally, A. Morales, Bench-
marking touchscreen biometrics for mobile authentication, IEEE Trans. on
Information Forensics and Security 13 (11) (2018) 2720–2733.
[10] H. J. Escalante, H. Kaya, A. A. Salah, S. Escalera, Y. G;ltrk, U. Gl, X. Bar,
I. Guyon, J. C. S. Jacques, M. Madadi, S. Ayache, E. Viegas, F. Gurpinar,
A. S. Wicaksana, C. Liem, M. A. J. Van Gerven, R. Van Lier, Model-
ing, recognizing, and explaining apparent personality from videos, IEEE
Transactions on Affective Computing.
[11] E. Nosakhare, R. Picard, Toward assessing and recommending combina-
tions of behaviors for improving health and well-being, ACM Trans. Com-
put. Healthcare 1 (1).
23