
[2]
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
“Analyzing and Improving the Image Quality of StyleGAN”. In: Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2020.
[3]
Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. “Progressive Growing of GANs
for Improved Quality, Stability, and Variation”. In: International Conference on Learning
Representations. 2018.
[4]
Ali Razavi, Aaron van den Oord, and Oriol Vinyals. “Generating Diverse High-Fidelity Images
With VQ-VAE-2”. In: Advances in Neural Information Processing Systems. 2019, pp. 14866–
14876.
[5]
Stanislav Pidhorskyi, Donald A. Adjeroh, and Gianfranco Doretto. “Adversarial Latent Au-
toencoders”. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, June 2020.
[6]
Paweł Korus. “Digital Image Integrity – A Survey of Protection and Verification Techniques”.
In: Digital Signal Processing 71 (Dec. 2017), pp. 1–26.
[7]
Javier Galbally, Sebastien Marcel, and Julian Fierrez. “Biometric Antispoofing Methods: A
Survey in Face Recognition”. In: IEEE Access 2 (2014), pp. 1530–1552.
[8]
Alessandro Piva. “An Overview on Image Forensics”. In: ISRN Signal Processing 2013 (2013),
pp. 1–22.
[9]
Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour Hadid. “Face Spoofing Detection
Using Colour Texture Analysis”. In: IEEE Transactions on Information Forensics and Security
11.8 (Aug. 2016), pp. 1818–1830.
[10]
Haodong Li, Bin Li, Shunquan Tan, and Jiwu Huang. “Identification of Deep Network Gener-
ated Images Using Disparities in Color Components”. In: Signal Processing 174 (Sept. 2020),
p. 107616.
[11]
Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. “Do GANs Leave
Artificial Fingerprints?” In: 2019 IEEE Conference on Multimedia Information Processing
and Retrieval (MIPR). IEEE, Mar. 2019.
[12]
Xinsheng Xuan, Bo Peng, Wei Wang, and Jing Dong. “On the Generalization of GAN Image
Forensics”. In: Biometric Recognition. Springer International Publishing, 2019, pp. 134–141.
[13]
Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. “CNN-
Generated Images Are Surprisingly Easy to Spot. . . for Now”. In: Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2020.
[14]
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”. In: Proceedings
of the 27th International Conference on Neural Information Processing Systems - Volume 2.
2014, pp. 2672–2680.
[15]
Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013. arXiv:
1312.
6114 [cs.ML].
[16]
A. van der Schaaf and J.H. van Hateren. “Modelling the Power Spectra of Natural Images:
Statistics and Information”. In: Vision Research 36.17 (Sept. 1996), pp. 2759–2770.
[17]
Michael Parker. “Image and Video Compression Fundamentals”. In: Digital Signal Processing
101 (Second Edition). 2017. Chap. 25, pp. 329–346.
[18]
David Salomon and Giovanni Motta. Handbook of Data Compression. Springer London, 2010.
[19]
Weiwei Zhang, Jian Sun, and Xiaoou Tang. “Cat Head Detection - How to Effectively Ex-
ploit Shape and Texture Features”. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 802–816.
[20]
Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin
Arjovsky, and Aaron Courville. Adversarially Learned Inference. 2016. arXiv:
1606.00704
[cs.LG].
[21]
Wenzhe Shi, Jose Caballero, Lucas Theis, Ferenc Huszar, Andrew Aitken, Christian Ledig,
and Zehan Wang. Is The Deconvolution Layer The Same As A Convolutional Layer? 2016.
arXiv: 1609.07009 [cs.CV].
10