
REFERENCES
[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The Web Never Forgets: Persistent Tracking Mechanisms
in the Wild,” Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’14, pp. 674–689, 2014.
[2] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. G¨
urses, F. Piessens,
and B. Preneel, “FPDetective,” Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security - CCS ’13, pp.
1129–1140, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2508859.2516674
[3] F. Alaca and P. C. V. Oorschot, “Device Fingerprinting for
Augmenting Web Authentication: Classification and Analysis of
Methods,” Annual Computer Security Applications Conference (ASAC
’32), 2016. [Online]. Available: http://people.scs.carleton.ca/∼paulv/
papers/acsac2016-device-fingerprinting.pdf
[4] S. Bernard, L. Heutte, and S. Adam, “Influence of hyperparameters on
random forest accuracy,” Proc. Int. Workshop Multiple Classifier Syst.,
vol. 5519 LNCS, pp. 171–180, 2009.
[5] K. Boda, ´
A. M. F¨
oldes, G. G. Guly´
as, and S. Imre, “User tracking
on the web via cross-browser fingerprinting,” in Nordic Conference on
Secure IT Systems. Springer, 2011, pp. 31–46.
[6] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: http://dx.doi.org/10.1023/A:
1010933404324
[7] Y. Cao, “(Cross-) Browser Fingerprinting via OS and Hardware Level
Features,” 24nd Annual Network and Distributed System Security Sym-
posium, NDSS’17, no. March, 2017.
[8] P. Eckersley, “How unique is your web browser?” Proceedings of the
10th Privacy Enhancing Technologies Symposium (PETS), 2010.
[9] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site
Measurement and Analysis,” Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security - CCS’16, no. 1,
pp. 1388–1401, 2016.
[10] D. Fifield and S. Egelman, “Fingerprinting web users through font
metrics,” Financial Cryptography and Data Security, vol. 8975, pp.
107–124, 2015.
[11] T. Hupperich, D. Maiorca, M. K¨
uhrer, T. Holz, and G. Giacinto,
“On the Robustness of Mobile Device Fingerprinting,” Proceedings
of the 31st Annual Computer Security Applications Conference,
pp. 191–200, 2015. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2818000.2818032
[12] P. Laperdrix, B. Baudry, and V. Mishra, “FPRandom: Randomizing
core browser objects to break advanced device fingerprinting
techniques,” Proceedings - 9th Int. Symposium on Engineering Secure
Software and Systems, ESSoS 2017, Jul. 2017. [Online]. Available:
https://hal.inria.fr/hal-01527580
[13] P. Laperdrix, W. Rudametkin, and B. Baudry, “Mitigating Browser
Fingerprint Tracking: Multi-level Reconfiguration and Diversification,”
Proceedings - 10th Int. Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2015, pp. 98–108, 2015.
[Online]. Available: https://hal.inria.fr/hal- 01121108
[14] ——, “Beauty and the Beast: Diverting Modern Web Browsers
to Build Unique Browser Fingerprints,” Proceedings - 2016 IEEE
Symposium on Security and Privacy, SP 2016, pp. 878–894, 2016.
[Online]. Available: https://hal.inria.fr/hal- 01285470
[15] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts,
“Understanding variable importances in forests of randomized
trees,” Advances in Neural Information Processing Systems 26,
pp. 431–439, 2013. [Online]. Available: http://papers.nips.cc/paper/
4928-understanding- variable-importances-in-forests- of-randomized- trees.
pdf
[16] O. Loyola-Gonz´
alez, M. Garc´
ıa-Borroto, M. A. Medina-P´
erez, J. F.
Mart´
ınez-Trinidad, J. A. Carrasco-Ochoa, and G. De Ita, An
Empirical Study of Oversampling and Undersampling Methods for
LCMine an Emerging Pattern Based Classifier. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 264–273. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38989- 4 27
[17] J. R. Mayer, “Internet Anonymity in the Age of Web 2.0,” A Senior
Thesis presented to the Faculty of the Woodrow Wilson School of
Public and International A airs in partial ful llment of the requirements
for the degree of Bachelor of Arts., p. 103, 2009. [Online]. Available:
https://jonathanmayer.org/papers data/thesis09.pdf
[18] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
Information in JavaScript Implementations,” Web 2.0 Security &
Privacy, pp. 1–11, 2011. [Online]. Available: http://cseweb.ucsd.edu/
∼hovav/papers/mbys11.html
[19] K. Mowery and H. Shacham, “Pixel Perfect : Fingerprinting Canvas in
HTML5,” Web 2.0 Security & Privacy 20 (W2SP), pp. 1–12, 2012.
[20] M. Mulazzani, P. Reschl, and M. Huber, “Fast and Reliable Browser
Identification with JavaScript Engine Fingerprinting,” Proceedings
of W2SP, 2013. [Online]. Available: http://www.sba-research.org/
wp-content/uploads/publications/jsfingerprinting.pdf
[21] N. Nikiforakis, W. Joosen, and B. Livshits, “PriVaricator,” Proceedings
of the 24th International Conference on World Wide Web - WWW ’15,
pp. 820–830, 2015. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2736277.2741090
[22] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” Proceedings - IEEE Symposium on Security and
Privacy, pp. 541–555, 2013.
[23] M. Perry, E. Clark, and S. Murdoch, “The Design and Implementation
of the Tor Browser,” Tech. Rep., May 2015, https://www.torproject.org/
projects/torbrowser/design.
[24] C. F. Torres, H. Jonker, and S. Mauw, “FP-block: Usable web privacy
by controlling browser fingerprinting,” ESORICS, 2015, vol. 9327, no.
October, pp. 3–19, 2015.
[25] W. Wu, J. Wu, Y. Wang, Z. Ling, and M. Yang, “Effi-
cient Fingerprinting-Based Android Device Identification With Zero-
Permission Identifiers,” vol. 4, pp. 8073–8083, 2016.
[26] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host Fingerprinting
and Tracking on the Web: Privacy and Security Implications,” Network
and Distributed System Security Symposium, pp. 1–16, 2012.
14